Physicist's Journeys Through the AI World - A Topical Review. There is no royal road to unsupervised learning

05/02/2019
by   Imad Alhousseini, et al.
18

Artificial Intelligence (AI), defined in its most simple form, is a technological tool that makes machines intelligent. Since learning is at the core of intelligence, machine learning poses itself as a core sub-field of AI. Then there comes a subclass of machine learning, known as deep learning, to address the limitations of their predecessors. AI has generally acquired its prominence over the past few years due to its considerable progress in various fields. AI has vastly invaded the realm of research. This has led physicists to attentively direct their research towards implementing AI tools. Their central aim has been to gain better understanding and enrich their intuition. This review article is meant to supplement the previously presented efforts to bridge the gap between AI and physics, and take a serious step forward to filter out the "Babelian" clashes brought about from such gabs. This necessitates first to have fundamental knowledge about common AI tools. To this end, the review's primary focus shall be on deep learning models called artificial neural networks. They are deep learning models which train themselves through different learning processes. It discusses also the concept of Markov decision processes. Finally, shortcut to the main goal, the review thoroughly examines how these neural networks are capable to construct a physical theory describing some observations without applying any previous physical knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro