Phoneme Segmentation Using Self-Supervised Speech Models

11/02/2022
by   Luke Strgar, et al.
0

We apply transfer learning to the task of phoneme segmentation and demonstrate the utility of representations learned in self-supervised pre-training for the task. Our model extends transformer-style encoders with strategically placed convolutions that manipulate features learned in pre-training. Using the TIMIT and Buckeye corpora we train and test the model in the supervised and unsupervised settings. The latter case is accomplished by furnishing a noisy label-set with the predictions of a separate model, it having been trained in an unsupervised fashion. Results indicate our model eclipses previous state-of-the-art performance in both settings and on both datasets. Finally, following observations during published code review and attempts to reproduce past segmentation results, we find a need to disambiguate the definition and implementation of widely-used evaluation metrics. We resolve this ambiguity by delineating two distinct evaluation schemes and describing their nuances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset