Personalized local heating neutralizing individual, spatial and temporal thermo-physiological variances in extreme cold environments

12/11/2022
by   Yi Ju, et al.
0

In this paper, we investigate the feasibility, robustness and optimization of introducing personal comfort systems (PCS), apparatuses that promises in energy saving and comfort improvement, into a broader range of environments. We report a series of laboratory experiments systematically examining the effect of personalized heating in neutralizing individual, spatial and temporal variations of thermal demands. The experiments were conducted in an artificial climate chamber at -15 degC in order to simulate extreme cold environments. We developed a heating garment with 20 pieces of 20 * 20 cm2 heating cloth (grouped into 9 regions) comprehensively covering human body. Surface temperatures of the garment can be controlled independently, quickly (within 20 seconds), precisely (within 1 degC) and easily (through a tablet) up to 45 degC. Participants were instructed to adjust surface temperatures of each segment to their preferences, with their physiological, psychological and adjustment data collected. We found that active heating could significantly and stably improve thermal satisfaction. The overall TSV and TCV were improved 1.50 and 1.53 during the self-adjustment phase. Preferred heating surface temperatures for different segments varied widely. Further, even for the same segment, individual differences among participants were considerable. Such variances were observed through local heating powers, while unnoticeable among thermal perception votes. In other words, all these various differences could be neutralized given the flexibility in personalized adjustments. Our research reaffirms the paradigm of "adaptive thermal comfort" and will promote innovations on human-centric design for more efficient PCSs.

READ FULL TEXT

page 4

page 6

page 7

page 12

page 17

research
08/05/2022

Cohort comfort models – Using occupants' similarity to predict personal thermal preference with less data

We introduce Cohort Comfort Models, a new framework for predicting how n...
research
11/12/2018

Macro pose-based non-invasive thermal comfort perception for energy efficiency

Individual thermal comfort perception plays very important roles in smar...
research
09/16/2023

Enhancing personalised thermal comfort models with Active Learning for improved HVAC controls

Developing personalised thermal comfort models to inform occupant-centri...
research
08/27/2019

Physiological and Affective Computing through Thermal Imaging: A Survey

Thermal imaging-based physiological and affective computing is an emergi...

Please sign up or login with your details

Forgot password? Click here to reset