Person Re-identification with Bias-controlled Adversarial Training

03/30/2019
by   Sara Iodice, et al.
0

Inspired by the effectiveness of adversarial training in the area of Generative Adversarial Networks we present a new approach for learning feature representations in person re-identification. We investigate different types of bias that typically occur in re-ID scenarios, i.e., pose, body part and camera view, and propose a general approach to address them. We introduce an adversarial strategy for controlling bias, named Bias-controlled Adversarial framework (BCA), with two complementary branches to reduce or to enhance bias-related features. The results and comparison to the state of the art on different benchmarks show that our framework is an effective strategy for person re-identification. The performance improvements are in both full and partial views of persons.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset