Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing

12/13/2017
by   Gabor Hannak, et al.
0

Bayesian approximate message passing (BAMP) is an efficient method in compressed sensing that is nearly optimal in the minimum mean squared error (MMSE) sense. Bayesian approximate message passing (BAMP) performs joint recovery of multiple vectors with identical support and accounts for correlations in the signal of interest and in the noise. In this paper, we show how to reduce the complexity of vector BAMP via a simple joint decorrelation diagonalization) transform of the signal and noise vectors, which also facilitates the subsequent performance analysis. We prove that BAMP and the corresponding state evolution (SE) are equivariant with respect to the joint decorrelation transform and preserve diagonality of the residual noise covariance for the Bernoulli-Gauss (BG) prior. We use these results to analyze the dynamics and the mean squared error (MSE) performance of BAMP via the replica method, and thereby understand the impact of signal correlation and number of jointly sparse signals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset