Payoff landscapes and the robustness of selfish optimization in iterated games

11/28/2021
by   Arjun Mirani, et al.
0

In iterated games, a player can unilaterally exert influence over the outcome through a careful choice of strategy. A powerful class of such "payoff control" strategies was discovered by Press and Dyson in 2012. Their so-called "zero-determinant" (ZD) strategies allow a player to unilaterally enforce a linear relationship between both players' payoffs. It was subsequently shown that when the slope of this linear relationship is positive, ZD strategies are robustly effective against a selfishly optimizing co-player, in that all adapting paths of the selfish player lead to the maximal payoffs for both players (at least when there are certain restrictions on the game parameters). In this paper, we investigate the efficacy of selfish learning against a fixed player in more general settings, for both ZD and non-ZD strategies. We first prove that in any symmetric 2x2 game, the selfish player's final strategy must be of a certain form and cannot be fully stochastic. We then show that there are prisoner's dilemma interactions for which the robustness result does not hold when one player uses a fixed ZD strategy with positive slope. We give examples of selfish adapting paths that lead to locally but not globally optimal payoffs, undermining the robustness of payoff control strategies. For non-ZD strategies, these pathologies arise regardless of the original restrictions on the game parameters. Our results illuminate the difficulty of implementing robust payoff control and selfish optimization, even in the simplest context of playing against a fixed strategy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro