Pattern graphs: a graphical approach to nonmonotone missing data

04/01/2020
by   Yen-Chi Chen, et al.
0

We introduce the concept of pattern graphs–directed acyclic graphs representing how response patterns are associated. A pattern graph represents an identifying restriction that is nonparametrically identified/saturated and is often a missing not at random restriction. We introduce a selection model and a pattern mixture model formulations using the pattern graphs and show that they are equivalent. A pattern graph leads to an inverse probability weighting estimator as well as an imputation-based estimator. Asymptotic theories of the estimators are studied and we provide a graph-based recursive procedure for computing both estimators. We propose three graph-based sensitivity analyses and study the equivalence class of pattern graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro