Path Signatures for Diversity in Probabilistic Trajectory Optimisation

08/08/2023
by   Lucas Barcelos, et al.
0

Motion planning can be cast as a trajectory optimisation problem where a cost is minimised as a function of the trajectory being generated. In complex environments with several obstacles and complicated geometry, this optimisation problem is usually difficult to solve and prone to local minima. However, recent advancements in computing hardware allow for parallel trajectory optimisation where multiple solutions are obtained simultaneously, each initialised from a different starting point. Unfortunately, without a strategy preventing two solutions to collapse on each other, naive parallel optimisation can suffer from mode collapse diminishing the efficiency of the approach and the likelihood of finding a global solution. In this paper we leverage on recent advances in the theory of rough paths to devise an algorithm for parallel trajectory optimisation that promotes diversity over the range of solutions, therefore avoiding mode collapses and achieving better global properties. Our approach builds on path signatures and Hilbert space representations of trajectories, and connects parallel variational inference for trajectory estimation with diversity promoting kernels. We empirically demonstrate that this strategy achieves lower average costs than competing alternatives on a range of problems, from 2D navigation to robotic manipulators operating in cluttered environments.

READ FULL TEXT

page 1

page 3

page 8

page 9

page 10

page 15

research
07/09/2021

Probabilistic Trajectory Prediction with Structural Constraints

This work addresses the problem of predicting the motion trajectories of...
research
08/26/2021

Parallelised Diffeomorphic Sampling-based Motion Planning

We propose Parallelised Diffeomorphic Sampling-based Motion Planning (PD...
research
07/17/2019

Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes

Trajectory optimization methods for motion planning attempt to generate ...
research
09/09/2020

Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning

Training agents to autonomously learn how to use anthropomorphic robotic...
research
09/16/2021

Convex strategies for trajectory optimisation: application to the Polytope Traversal Problem

Non-linear Trajectory Optimisation (TO) methods require good initial gue...
research
09/27/2019

TORM: Collision-Free Trajectory Optimization of Redundant Manipulator given an End-Effector Path

A redundant manipulator has multiple inverse kinematics solutions per an...
research
07/11/2021

Entropy Regularized Motion Planning via Stein Variational Inference

Many Imitation and Reinforcement Learning approaches rely on the availab...

Please sign up or login with your details

Forgot password? Click here to reset