PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a localized restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object and thus imposes a real-world threat to computer vision systems. To counter this threat, we propose PatchCleanser as a certifiably robust defense against adversarial patches that is compatible with any image classifier. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. In the first round of masking, we apply a set of carefully generated masks to the input image and evaluate the model prediction on every masked image. If model predictions on all one-masked images reach a unanimous agreement, we output the agreed prediction label. Otherwise, we perform a second round of masking to settle the disagreement, in which we evaluate model predictions on two-masked images to robustly recover the correct prediction label. Notably, we can prove that our defense will always make correct predictions on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate our defense on the ImageNet, ImageNette, CIFAR-10, CIFAR-100, SVHN, and Flowers-102 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Notably, our defense can achieve 83.8 certified robust accuracy against a 2 1000-class ImageNet dataset.
READ FULL TEXT