Passage Ranking with Weak Supervision
In this paper, we propose a weak supervision framework for neural ranking tasks based on the data programming paradigm Ratner2016, which enables us to leverage multiple weak supervision signals from different sources. Empirically, we consider two sources of weak supervision signals, unsupervised ranking functions and semantic feature similarities. We train a BERT-based passage-ranking model (which achieves new state-of-the-art performances on two benchmark datasets with full supervision) in our weak supervision framework. Without using ground-truth training labels, BERT-PR models outperform BM25 baseline by a large margin on all three datasets and even beat the previous state-of-the-art results with full supervision on two of the datasets.
READ FULL TEXT