Parts-Based Articulated Object Localization in Clutter Using Belief Propagation

by   Jana Pavlasek, et al.

Robots working in human environments must be able to perceive and act on challenging objects with articulations, such as a pile of tools. Articulated objects increase the dimensionality of the pose estimation problem, and partial observations under clutter create additional challenges. To address this problem, we present a generative-discriminative parts-based recognition and localization method for articulated objects in clutter. We formulate the problem of articulated object pose estimation as a Markov Random Field (MRF). Hidden nodes in this MRF express the pose of the object parts, and edges express the articulation constraints between parts. Localization is performed within the MRF using an efficient belief propagation method. The method is informed by both part segmentation heatmaps over the observation, generated by a neural network, and the articulation constraints between object parts. Our generative-discriminative approach allows the proposed method to function in cluttered environments by inferring the pose of occluded parts using hypotheses from the visible parts. We demonstrate the efficacy of our methods in a tabletop environment for recognizing and localizing hand tools in uncluttered and cluttered configurations.


page 1

page 3

page 5

page 6

page 7


Factored Pose Estimation of Articulated Objects using Efficient Nonparametric Belief Propagation

Robots working in human environments often encounter a wide range of art...

Human Pose Estimation for Real-World Crowded Scenarios

Human pose estimation has recently made significant progress with the ad...

Articulated Pose Estimation Using Hierarchical Exemplar-Based Models

Exemplar-based models have achieved great success on localizing the part...

A Hierarchical Approach to Active Pose Estimation

Creating mobile robots which are able to find and manipulate objects in ...

A Hierarchical Approach for Joint Multi-view Object Pose Estimation and Categorization

We propose a joint object pose estimation and categorization approach wh...

Video Human Segmentation using Fuzzy Object Models and its Application to Body Pose Estimation of Toddlers for Behavior Studies

Video object segmentation is a challenging problem due to the presence o...

Semantic Mapping with Simultaneous Object Detection and Localization

We present a filtering-based method for semantic mapping to simultaneous...

Please sign up or login with your details

Forgot password? Click here to reset