Partially-Specified Causal Simulations

09/19/2023
by   A. Zamanian, et al.
0

Simulation studies play a key role in the validation of causal inference methods. The simulation results are reliable only if the study is designed according to the promised operational conditions of the method-in-test. Still, many causal inference literature tend to design over-restricted or misspecified studies. In this paper, we elaborate on the problem of improper simulation design for causal methods and compile a list of desiderata for an effective simulation framework. We then introduce partially-randomized causal simulation (PARCS), a simulation framework that meets those desiderata. PARCS synthesizes data based on graphical causal models and a wide range of adjustable parameters. There is a legible mapping from usual causal assumptions to the parameters, thus, users can identify and specify the subset of related parameters and randomize the remaining ones to generate a range of complying data-generating processes for their causal method. The result is a more comprehensive and inclusive empirical investigation for causal claims. Using PARCS, we reproduce and extend the simulation studies of two well-known causal discovery and missing data analysis papers to emphasize the necessity of a proper simulation design. Our results show that those papers would have improved and extended the findings, had they used PARCS for simulation. The framework is implemented as a Python package, too. By discussing the comprehensiveness and transparency of PARCS, we encourage causal inference researchers to utilize it as a standard tool for future works.

READ FULL TEXT
research
07/31/2023

Causal Inference for Banking Finance and Insurance A Survey

Causal Inference plays an significant role in explaining the decisions t...
research
09/15/2022

Stochastic Tree Ensembles for Estimating Heterogeneous Effects

Determining subgroups that respond especially well (or poorly) to specif...
research
05/22/2020

Navigated Weighting to Improve Inverse Probability Weighting for Missing Data Problems and Causal Inference

The inverse probability weighting (IPW) is broadly utilized to address m...
research
02/10/2020

Simulating longitudinal data from marginal structural models using the additive hazard model

Observational longitudinal data on treatments and covariates are increas...
research
09/07/2022

Quantitative probing: Validating causal models using quantitative domain knowledge

We present quantitative probing as a model-agnostic framework for valida...
research
03/25/2021

User-Oriented Smart General AI System under Causal Inference

General AI system solves a wide range of tasks with high performance in ...
research
01/26/2017

The Causal Frame Problem: An Algorithmic Perspective

The Frame Problem (FP) is a puzzle in philosophy of mind and epistemolog...

Please sign up or login with your details

Forgot password? Click here to reset