Part-based Graph Convolutional Network for Action Recognition

09/13/2018 ∙ by Kalpit Thakkar, et al. ∙ 0

Human actions comprise of joint motion of articulated body parts or `gestures'. Human skeleton is intuitively represented as a sparse graph with joints as nodes and natural connections between them as edges. Graph convolutional networks have been used to recognize actions from skeletal videos. We introduce a part-based graph convolutional network (PB-GCN) for this task, inspired by Deformable Part-based Models (DPMs). We divide the skeleton graph into four subgraphs with joints shared across them and learn a recognition model using a part-based graph convolutional network. We show that such a model improves performance of recognition, compared to a model using entire skeleton graph. Instead of using 3D joint coordinates as node features, we show that using relative coordinates and temporal displacements boosts performance. Our model achieves state-of-the-art performance on two challenging benchmark datasets NTURGB+D and HDM05, for skeletal action recognition.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.