PARIS: Part-level Reconstruction and Motion Analysis for Articulated Objects

08/14/2023
by   Jiayi Liu, et al.
0

We address the task of simultaneous part-level reconstruction and motion parameter estimation for articulated objects. Given two sets of multi-view images of an object in two static articulation states, we decouple the movable part from the static part and reconstruct shape and appearance while predicting the motion parameters. To tackle this problem, we present PARIS: a self-supervised, end-to-end architecture that learns part-level implicit shape and appearance models and optimizes motion parameters jointly without any 3D supervision, motion, or semantic annotation. Our experiments show that our method generalizes better across object categories, and outperforms baselines and prior work that are given 3D point clouds as input. Our approach improves reconstruction relative to state-of-the-art baselines with a Chamfer-L1 distance reduction of 3.94 (45.2 achieves 5 Video summary at: https://youtu.be/tDSrROPCgUc

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset