Parametrised Algorithms for Directed Modular Width

05/30/2019 ∙ by Raphael Steiner, et al. ∙ 0

Many well-known NP-hard algorithmic problems on directed graphs resist efficient parametrisations with most known width measures for directed graphs, such as directed treewidth, DAG-width, Kelly-width and many others. While these focus on measuring how close a digraph is to an oriented tree resp. a directed acyclic graph, in this paper, we investigate directed modular width as a parameter, which is closer to the concept of clique-width. We investigate applications of modular decompositions of directed graphs to a wide range of algorithmic problems and derive FPT-algorithms for several well-known digraph-specific NP-hard problems, namely minimum (weight) directed feedback vertex set, minimum (weight) directed dominating set, digraph colouring, directed Hamiltonian path/cycle, partitioning into paths, (capacitated) vertex-disjoint directed paths, and the directed subgraph homeomorphism problem. The latter yields a polynomial-time algorithm for detecting topological minors in digraphs of bounded directed modular width. Finally we illustrate that also other structural digraph parameters, such as the directed pathwidth and the cycle-rank can be computed efficiently using directed modular width as a parameter.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.