Parametrised Algorithms for Directed Modular Width

05/30/2019
by   Raphael Steiner, et al.
0

Many well-known NP-hard algorithmic problems on directed graphs resist efficient parametrisations with most known width measures for directed graphs, such as directed treewidth, DAG-width, Kelly-width and many others. While these focus on measuring how close a digraph is to an oriented tree resp. a directed acyclic graph, in this paper, we investigate directed modular width as a parameter, which is closer to the concept of clique-width. We investigate applications of modular decompositions of directed graphs to a wide range of algorithmic problems and derive FPT-algorithms for several well-known digraph-specific NP-hard problems, namely minimum (weight) directed feedback vertex set, minimum (weight) directed dominating set, digraph colouring, directed Hamiltonian path/cycle, partitioning into paths, (capacitated) vertex-disjoint directed paths, and the directed subgraph homeomorphism problem. The latter yields a polynomial-time algorithm for detecting topological minors in digraphs of bounded directed modular width. Finally we illustrate that also other structural digraph parameters, such as the directed pathwidth and the cycle-rank can be computed efficiently using directed modular width as a parameter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset