Parametric Presburger Arithmetic: Complexity of Counting and Quantifier Elimination

02/03/2018
by   Tristram Bogart, et al.
0

We consider an expansion of Presburger arithmetic which allows multiplication by k parameters t_1,...,t_k. A formula in this language defines a parametric set S_t⊆Z^d as t varies in Z^k, and we examine the counting function |S_t| as a function of t. For a single parameter, it is known that |S_t| can be expressed as an eventual quasi-polynomial (there is a period m such that, for sufficiently large t, the function is polynomial on each of the residue classes mod m). We show that such a nice expression is impossible with 2 or more parameters. Indeed (assuming P ≠ NP) we construct a parametric set S_t_1,t_2 such that |S_t_1, t_2| is not even polynomial-time computable on input (t_1,t_2). In contrast, for parametric sets S_t⊆Z^d with arbitrarily many parameters, defined in a similar language without the ordering relation, we show that |S_t| is always polynomial-time computable in the size of t, and in fact can be represented using the gcd and similar functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset