Parametric Dynamic Mode Decomposition for Reduced Order Modeling
Dynamic Mode Decomposition (DMD) is a model-order reduction approach, whereby spatial modes of fixed temporal frequencies are extracted from numerical or experimental data sets. The DMD low-rank or reduced operator is typically obtained by singular value decomposition of the temporal data sets. For parameter-dependent models, as found in many multi-query applications such as uncertainty quantification or design optimization, the only parametric DMD technique developed was a stacked approach, with data sets at multiples parameter values were aggregated together, increasing the computational work needed to devise low-rank dynamical reduced-order models. In this paper, we present two novel approach to carry out parametric DMD: one based on the interpolation of the reduced-order DMD eigenpair and the other based on the interpolation of the reduced DMD (Koopman) operator. Numerical results are presented for diffusion-dominated nonlinear dynamical problems, including a multiphysics radiative transfer example. All three parametric DMD approaches are compared.
READ FULL TEXT