Parameterized Wasserstein Hamiltonian Flow

05/31/2023
by   Hao Wu, et al.
0

In this work, we propose a numerical method to compute the Wasserstein Hamiltonian flow (WHF), which is a Hamiltonian system on the probability density manifold. Many well-known PDE systems can be reformulated as WHFs. We use parameterized function as push-forward map to characterize the solution of WHF, and convert the PDE to a finite-dimensional ODE system, which is a Hamiltonian system in the phase space of the parameter manifold. We establish error analysis results for the continuous time approximation scheme in Wasserstein metric. For the numerical implementation, we use neural networks as push-forward maps. We apply an effective symplectic scheme to solve the derived Hamiltonian ODE system so that the method preserves some important quantities such as total energy. The computation is done by fully deterministic symplectic integrator without any neural network training. Thus, our method does not involve direct optimization over network parameters and hence can avoid the error introduced by stochastic gradient descent (SGD) methods, which is usually hard to quantify and measure. The proposed algorithm is a sampling-based approach that scales well to higher dimensional problems. In addition, the method also provides an alternative connection between the Lagrangian and Eulerian perspectives of the original WHF through the parameterized ODE dynamics.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
06/16/2020

Time Discretizations of Wasserstein-Hamiltonian Flows

We study discretizations of Hamiltonian systems on the probability densi...
research
08/04/2019

Hopfield Neural Network Flow: A Geometric Viewpoint

We provide gradient flow interpretations for the continuous-time continu...
research
08/29/2023

Optimization via conformal Hamiltonian systems on manifolds

In this work we propose a method to perform optimization on manifolds. W...
research
05/20/2021

A continuation multiple shooting method for Wasserstein geodesic equation

In this paper, we propose a numerical method to solve the classic L^2-op...
research
09/30/2019

Hamiltonian Generative Networks

The Hamiltonian formalism plays a central role in classical and quantum ...
research
01/31/2022

Neural Network Training with Asymmetric Crosspoint Elements

Analog crossbar arrays comprising programmable nonvolatile resistors are...
research
09/20/2020

Lagrangian and Hamiltonian Mechanics for Probabilities on the Statistical Manifold

We provide an Information-Geometric formulation of Classical Mechanics o...

Please sign up or login with your details

Forgot password? Click here to reset