Parameterized Synthetic Image Data Set for Fisheye Lens

11/12/2018
by   Zhen Chen, et al.
0

Based on different projection geometry, a fisheye image can be presented as a parameterized non-rectilinear image. Deep neural networks(DNN) is one of the solutions to extract parameters for fisheye image feature description. However, a large number of images are required for training a reasonable prediction model for DNN. In this paper, we propose to extend the scale of the training dataset using parameterized synthetic images. It effectively boosts the diversity of images and avoids the data scale limitation. To simulate different viewing angles and distances, we adopt controllable parameterized projection processes on transformation. The reliability of the proposed method is proved by testing images captured by our fisheye camera. The synthetic dataset is the first dataset that is able to extend to a big scale labeled fisheye image dataset. It is accessible via: http://www2.leuphana.de/misl/fisheye-data-set/.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset