Parameterized inapproximability of Morse matching
We study the problem of minimizing the number of critical simplices from the point of view of inapproximability and parameterized complexity. We first show inapproximability of Min-Morse Matching within a factor of 2^log^(1-ϵ)n. Our second result shows that Min-Morse Matching is W[P]-hard with respect to the standard parameter. Next, we show that Min-Morse Matching with standard parameterization has no FPT approximation algorithm for any approximation factor ρ. The above hardness results are applicable to complexes of dimension ≥ 2. On the positive side, we provide a factor O(n/log n) approximation algorithm for Min-Morse Matching on 2-complexes, noting that no such algorithm is known for higher dimensional complexes. Finally, we devise discrete gradients with very few critical simplices for typical instances drawn from a fairly wide range of parameter values of the Costa-Farber model of random complexes.
READ FULL TEXT