Parameterized Channel Normalization for Far-field Deep Speaker Verification

09/24/2021
by   Xuechen Liu, et al.
0

We address far-field speaker verification with deep neural network (DNN) based speaker embedding extractor, where mismatch between enrollment and test data often comes from convolutive effects (e.g. room reverberation) and noise. To mitigate these effects, we focus on two parametric normalization methods: per-channel energy normalization (PCEN) and parameterized cepstral mean normalization (PCMN). Both methods contain differentiable parameters and thus can be conveniently integrated to, and jointly optimized with the DNN using automatic differentiation methods. We consider both fixed and trainable (data-driven) variants of each method. We evaluate the performance on Hi-MIA, a recent large-scale far-field speech corpus, with varied microphone and positional settings. Our methods outperform conventional mel filterbank features, with maximum of 33.5 rate under matched microphone and mismatched microphone conditions, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset