References
 Breiman [2001] L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statist. Sci., 16(3):199–231, 08 2001. doi: 10.1214/ss/1009213726.
 Chen et al. [2012] W.C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. pbdMPI: Programming with big data – interface to MPI, 2012. R Package, URL http://cran.rproject.org/package=pbdMPI.
 Eddy and Schervish [1987] W. F. Eddy and M. J. Schervish. Parallel processing on a network of vaxes with applications. In Proceedings of the Statistical Computing Section, pages 41–47. American Statistical Association, 1987.
 Frey and Slate [1991] P. Frey and D. Slate. Letter recognition using hollandstyle adaptive classifiers. Machine Learning, 6(2):161–182, 1991. ISSN 08856125. doi: 10.1007/BF00114162. URL http://dx.doi.org/10.1007/BF00114162.
 Heath [1987] M. Heath, editor. Hypercube Multiprocessors 1987: Proceedings of the Second Conference on Hypercube Multiprocessors. SIAM, 1987. URL http://books.google.com/books?id=fEbjEWonG0UC.
 Leisch and Dimitriadou [2010] F. Leisch and E. Dimitriadou. mlbench: Machine Learning Benchmark Problems, 2010. R package v 2.11.
 Liaw and Wiener [2002] A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2(3):18–22, 2002. URL http://CRAN.Rproject.org/doc/Rnews/.

Matloff [2015]
N. Matloff.
Parallel Computing for Data Science: With Examples in R, C++ and CUDA
. Chapman & Hall/CRC The R Series. CRC Press, 2015. ISBN 9781466587038.  Message Passing Interface Forum [2015] Message Passing Interface Forum. MPI: A messagepassing interface standard version 3.1. 2015. URL http://www.mpiforum.org.
 Ortega et al. [1989] J. Ortega, G. Voight, and C. Romine. Bibliography on parallel and vector numerical algorithms, 1989. URL http://liinwww.ira.uka.de/bibliography/Parallel/ovr.html.
 Ostrouchov [1987] G. Ostrouchov. Parallel computing on a hypercube: An overview of the architecture and some applications. In M. Heiberger, editor, Proc. 19th Symp. on the Interface of Computer Science and Statistics, pages 27–32, Washington, D.C., 1987. American Statistical Association.
 Ostrouchov et al. [2012] G. Ostrouchov, W.C. Chen, D. Schmidt, and P. Patel. Programming with big data in R, 2012. URL http://pbdr.org/.
 Schervish [1988] M. J. Schervish. Applications of parallel computation to statistical inference. Journal of the American Statistical Association, pages 976–983, 1988.
 Schmidberger et al. [2009] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, and U. Mansmann. State of the art in parallel computing with r. Journal of Statistical Software, 31(1):1–27, 2009.
 Schmidt et al. [2017] D. Schmidt, W.C. Chen, M. A. Matheson, and G. Ostrouchov. Programming with BIG data in R: Scaling analytics from one to thousands of nodes. Big Data Research, 8:1–11, 2017. ISSN 22145796. doi: https://doi.org/10.1016/j.bdr.2016.10.002.
 Wang et al. [2015] C. Wang, M.H. Chen, E. Schifano, J. Wu, and J. Yan. Statistical methods and computing for big data. arXiv.org, 2015. URL http://arxiv.org/abs/1502.07989v2.
 Xenopoulos et al. [2016] P. Xenopoulos, J. Daniel, M. Matheson, and S. Sukumar. Big data analytics on hpc architectures: Performance and cost. In 2016 IEEE International Conference on Big Data, pages 2286–2295, Dec 2016.
Comments
There are no comments yet.