Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning is a standard framework for modeling multi-agent interactions applied in real-world scenarios. Inspired by experience sharing in human groups, learning knowledge parallel reusing between agents can potentially promote team learning performance, especially in multi-task environments. When all agents interact with the environment and learn simultaneously, how each independent agent selectively learns from other agents' behavior knowledge is a problem that we need to solve. This paper proposes a novel knowledge transfer framework in MARL, PAT (Parallel Attentional Transfer). We design two acting modes in PAT, student mode and self-learning mode. Each agent in our approach trains a decentralized student actor-critic to determine its acting mode at each time step. When agents are unfamiliar with the environment, the shared attention mechanism in student mode effectively selects learning knowledge from other agents to decide agents' actions. PAT outperforms state-of-the-art empirical evaluation results against the prior advising approaches. Our approach not only significantly improves team learning rate and global performance, but also is flexible and transferable to be applied in various multi-agent systems.
READ FULL TEXT