Parallel Genetic Algorithm to Solve Traveling Salesman Problem on MapReduce Framework using Hadoop Cluster

01/24/2014
by   Harun Rasit Er, et al.
0

Traveling Salesman Problem (TSP) is one of the most common studied problems in combinatorial optimization. Given the list of cities and distances between them, the problem is to find the shortest tour possible which visits all the cities in list exactly once and ends in the city where it starts. Despite the Traveling Salesman Problem is NP-Hard, a lot of methods and solutions are proposed to the problem. One of them is Genetic Algorithm (GA). GA is a simple but an efficient heuristic method that can be used to solve Traveling Salesman Problem. In this paper, we will show a parallel genetic algorithm implementation on MapReduce framework in order to solve Traveling Salesman Problem. MapReduce is a framework used to support distributed computation on clusters of computers. We used free licensed Hadoop implementation as MapReduce framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro