Parallel Dither and Dropout for Regularising Deep Neural Networks

08/28/2015
by   Andrew J. R. Simpson, et al.
0

Effective regularisation during training can mean the difference between success and failure for deep neural networks. Recently, dither has been suggested as alternative to dropout for regularisation during batch-averaged stochastic gradient descent (SGD). In this article, we show that these methods fail without batch averaging and we introduce a new, parallel regularisation method that may be used without batch averaging. Our results for parallel-regularised non-batch-SGD are substantially better than what is possible with batch-SGD. Furthermore, our results demonstrate that dither and dropout are complimentary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro