Parallel Composition and Modular Verification of Computer Controlled Systems in Differential Dynamic Logic
Computer-Controlled Systems (CCS) are a subclass of hybrid systems where the periodic relation of control components to time is paramount. Since they additionally are at the heart of many safety-critical devices, it is of primary importance to correctly model such systems and to ensure they function correctly according to safety requirements. Differential dynamic logic dL is a powerful logic to model hybrid systems and to prove their correctness. We contribute a component-based modeling and reasoning framework to dL that separates models into components with timing guarantees, such as reactivity of controllers and controllability of continuous dynamics. Components operate in parallel, with coarse-grained interleaving, periodic execution and communication. We present techniques to automate system safety proofs from isolated, modular, and possibly mechanized proofs of component properties parameterized with timing characteristics.
READ FULL TEXT