Over-sampling De-occlusion Attention Network for Prohibited Items Detection in Noisy X-ray Images

by   Renshuai Tao, et al.

Security inspection is X-ray scanning for personal belongings in suitcases, which is significantly important for the public security but highly time-consuming for human inspectors. Fortunately, deep learning has greatly promoted the development of computer vision, offering a possible way of automatic security inspection. However, items within a luggage are randomly overlapped resulting in noisy X-ray images with heavy occlusions. Thus, traditional CNN-based models trained through common image recognition datasets fail to achieve satisfactory performance in this scenario. To address these problems, we contribute the first high-quality prohibited X-ray object detection dataset named OPIXray, which contains 8885 X-ray images from 5 categories of the widely-occurred prohibited item “cutters”. The images are gathered from an airport and these prohibited items are annotated manually by professional inspectors, which can be used as a benchmark for model training and further facilitate future research. To better improve occluded X-ray object detection, we further propose an over-sampling de-occlusion attention network (DOAM-O), which consists of a novel de-occlusion attention module and a new over-sampling training strategy. Specifically, our de-occlusion module, namely DOAM, simultaneously leverages the different appearance information of the prohibited items; the over-sampling training strategy forces the model to put more emphasis on these hard samples consisting these items of high occlusion levels, which is more suitable for this scenario. We comprehensively evaluated DOAM-O on the OPIXray dataset, which proves that our model can stably improve the performance of the famous detection models such as SSD, YOLOv3, and FCOS, and outperform many extensively-used attention mechanisms.


page 1

page 11


Occluded Prohibited Items Detection: An X-ray Security Inspection Benchmark and De-occlusion Attention Module

Object detection has taken advantage of the advances in deep convolution...

An Enhanced Prohibited Items Recognition Model

We proposed a new modeling method to promote the performance of prohibit...

Towards Real-World Prohibited Item Detection: A Large-Scale X-ray Benchmark

Automatic security inspection using computer vision technology is a chal...

SIXray : A Large-scale Security Inspection X-ray Benchmark for Prohibited Item Discovery in Overlapping Images

In this paper, we present a large-scale dataset and establish a baseline...

PIDray: A Large-scale X-ray Benchmark for Real-World Prohibited Item Detection

Automatic security inspection relying on computer vision technology is a...

Illicit item detection in X-ray images for security applications

Automated detection of contraband items in X-ray images can significantl...

Please sign up or login with your details

Forgot password? Click here to reset