Over-parameterization Improves Generalization in the XOR Detection Problem

10/06/2018
by   Alon Brutzkus, et al.
0

Empirical evidence suggests that neural networks with ReLU activations generalize better with over-parameterization. However, there is currently no theoretical analysis that explains this observation. In this work, we study a simplified learning task with over-parameterized convolutional networks that empirically exhibits the same qualitative phenomenon. For this setting, we provide a theoretical analysis of the optimization and generalization performance of gradient descent. Specifically, we prove data-dependent sample complexity bounds which show that over-parameterization improves the generalization performance of gradient descent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro