Outlier-robust Estimation of a Sparse Linear Model Using Invexity
In this paper, we study problem of estimating a sparse regression vector with correct support in the presence of outlier samples. The inconsistency of lasso-type methods is well known in this scenario. We propose a combinatorial version of outlier-robust lasso which also identifies clean samples. Subsequently, we use these clean samples to make a good estimation. We also provide a novel invex relaxation for the combinatorial problem and provide provable theoretical guarantees for this relaxation. Finally, we conduct experiments to validate our theory and compare our results against standard lasso.
READ FULL TEXT