Outage Performance Analysis of Full-Correlated Rayleigh MIMO Channels

09/23/2022
by   Huan Zhang, et al.
0

The outage performance of multiple-input multiple-output (MIMO) technique has received intensive attention to meet the stringent requirement of reliable communications for 5G applications, e.g., mission-critical machine-type communication (cMTC). To account for spatial correlation effects at both transmit and receive sides, the full-correlated Rayleigh MIMO fading channels are modeled according to Kronecker correlation structure in this paper. The outage probability is expressed as a weighted sum of the generalized Fox's H functions. The simple analytical result empowers asymptotic outage analysis at high signal-to-noise ratio (SNR), which not only reveal helpful insights into understanding the behavior of fading effects, but also offer useful design guideline for MIMO configurations. Particularly, the negative impact of the spatial correlation on the outage probability is revealed by using the concept of majorization, and the asymptotic outage probability is proved to be a monotonically increasing and convex function of the transmission rate. In the end, the analytical results are validated through extensive numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset