Orthogonal subspace based fast iterative thresholding algorithms for joint sparsity recovery

01/22/2021
by   Ningning Han, et al.
0

Sparse signal recoveries from multiple measurement vectors (MMV) with joint sparsity property have many applications in signal, image, and video processing. The problem becomes much more involved when snapshots of the signal matrix are temporally correlated. With signal's temporal correlation in mind, we provide a framework of iterative MMV algorithms based on thresholding, functional feedback and null space tuning. Convergence analysis for exact recovery is established. Unlike most of iterative greedy algorithms that select indices in a measurement/solution space, we determine indices based on an orthogonal subspace spanned by the iterative sequence. In addition, a functional feedback that controls the amount of energy relocation from the "tails" is implemented and analyzed. It is seen that the principle of functional feedback is capable to lower the number of iteration and speed up the convergence of the algorithm. Numerical experiments demonstrate that the proposed algorithm has a clearly advantageous balance of efficiency, adaptivity and accuracy compared with other state-of-the-art algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset