Orthogonal Statistical Learning
We provide excess risk guarantees for statistical learning in the presence of an unknown nuisance component. We analyze a two-stage sample splitting meta-algorithm that takes as input two arbitrary estimation algorithms: one for the target model and one for the nuisance model. We show that if the population risk satisfies a condition called Neyman orthogonality, the impact of the first stage error on the excess risk bound achieved by the meta-algorithm is of second order. Our general theorem is agnostic to the particular algorithms used for the target and nuisance and only makes an assumption on their individual performance. This enables the use of a plethora of existing results from statistical learning and machine learning literature to give new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather than parameter estimation, we can give guarantees under weaker assumptions than in previous works and accommodate the case where the target parameter belongs to a complex nonparametric class. When the nuisance and target parameters belong to arbitrary classes, we characterize conditions on the metric entropy such that oracle rates---rates of the same order as if we knew the nuisance model---are achieved. We also analyze the rates achieved by specific estimation algorithms such as variance-penalized empirical risk minimization, neural network estimation and sparse high-dimensional linear model estimation. We highlight the applicability of our results via four applications of primary importance: 1) heterogeneous treatment effect estimation, 2) offline policy optimization, 3) domain adaptation, and 4) learning with missing data.
READ FULL TEXT