Orthogonal Statistical Inference for Multimodal Data Analysis
Multimodal imaging has transformed neuroscience research. While it presents unprecedented opportunities, it also imposes serious challenges. Particularly, it is difficult to combine the merits of interpretability attributed to a simple association model and flexibility achieved by a highly adaptive nonlinear model. In this article, we propose an orthogonal statistical inferential framework, built upon the Neyman orthogonality and a form of decomposition orthogonality, for multimodal data analysis. We target the setting that naturally arises in almost all multimodal studies, where there is a primary modality of interest, plus additional auxiliary modalities. We successfully establish the root-N-consistency and asymptotic normality of the estimated primary parameter, the semi-parametric estimation efficiency, and the asymptotic honesty of the confidence interval of the predicted primary modality effect. Our proposal enjoys, to a good extent, both model interpretability and model flexibility. It is also considerably different from the existing statistical methods for multimodal data integration, as well as the orthogonality-based methods for high-dimensional inferences. We demonstrate the efficacy of our method through both simulations and an application to a multimodal neuroimaging study of Alzheimer's disease.
READ FULL TEXT