OrcoDCS: An IoT-Edge Orchestrated Online Deep Compressed Sensing Framework
Compressed data aggregation (CDA) over wireless sensor networks (WSNs) is task-specific and subject to environmental changes. However, the existing compressed data aggregation (CDA) frameworks (e.g., compressed sensing-based data aggregation, deep learning(DL)-based data aggregation) do not possess the flexibility and adaptivity required to handle distinct sensing tasks and environmental changes. Additionally, they do not consider the performance of follow-up IoT data-driven deep learning (DL)-based applications. To address these shortcomings, we propose OrcoDCS, an IoT-Edge orchestrated online deep compressed sensing framework that offers high flexibility and adaptability to distinct IoT device groups and their sensing tasks, as well as high performance for follow-up applications. The novelty of our work is the design and deployment of IoT-Edge orchestrated online training framework over WSNs by leveraging an specially-designed asymmetric autoencoder, which can largely reduce the encoding overhead and improve the reconstruction performance and robustness. We show analytically and empirically that OrcoDCS outperforms the state-of-the-art DCDA on training time, significantly improves flexibility and adaptability when distinct reconstruction tasks are given, and achieves higher performance for follow-up applications.
READ FULL TEXT