Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT Networks

11/25/2020
by   Yong Xiao, et al.
0

This paper studies an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL) based on the datasets uploaded from a multi-technology-supported IoT network. The data uploading performance of IoT network and the computational capacity of edge servers are entangled with each other in influencing the FL model training process. We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network as well as their local data processing capacity and only request the amount of data that is sufficient for training a satisfactory model. We evaluate the energy cost for data uploading when two widely-used IoT solutions: licensed band IoT (e.g., 5G NB-IoT) and unlicensed band IoT (e.g., Wi-Fi, ZigBee, and 5G NR-U) are available to each IoT device. We prove that the cost minimization problem of the entire IoT network is separable and can be divided into a set of subproblems, each of which can be solved by an individual edge server. We also introduce a mapping function to quantify the computational load of edge servers under different combinations of three key parameters: size of the dataset, local batch size, and number of local training passes. Finally, we adopt an Alternative Direction Method of Multipliers (ADMM)-based approach to jointly optimize energy cost of the IoT network and average computing resource utilization of edge servers. We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network. Simulation results show that our proposed framework significantly improves the resource efficiency of the IoT network and edge servers with only a limited sacrifice on the model convergence performance.

READ FULL TEXT
research
05/30/2022

Confederated Learning: Federated Learning with Decentralized Edge Servers

Federated learning (FL) is an emerging machine learning paradigm that al...
research
08/05/2023

FLight: A Lightweight Federated Learning Framework in Edge and Fog Computing

The number of Internet of Things (IoT) applications, especially latency-...
research
01/26/2023

Time-sensitive Learning for Heterogeneous Federated Edge Intelligence

Real-time machine learning has recently attracted significant interest d...
research
01/29/2021

Battery-constrained Federated Edge Learning in UAV-enabled IoT for B5G/6G Networks

In this paper, we study how to optimize the federated edge learning (FEE...
research
02/06/2020

Federated Orchestration for Network Slicing of Bandwidth and Computational Resource

Network slicing has been considered as one of the key enablers for 5G to...
research
10/28/2021

Computational Intelligence and Deep Learning for Next-Generation Edge-Enabled Industrial IoT

In this paper, we investigate how to deploy computational intelligence a...
research
08/09/2023

Federated Online/Offline Remote Data Inspection for Distributed Edge Computing

In edge computing environments, app vendors can cache their data to be s...

Please sign up or login with your details

Forgot password? Click here to reset