Optimizing Quantum Programs against Decoherence: Delaying Qubits into Quantum Superposition

04/18/2019
by   Yu Zhang, et al.
0

Quantum computing technology has reached a second renaissance in the last decade. However, in the NISQ era pointed out by John Preskill in 2018, quantum noise and decoherence, which affect the accuracy and execution effect of quantum programs, cannot be ignored and corrected by the near future NISQ computers. In order to let users more easily write quantum programs, the compiler and runtime system should consider underlying quantum hardware features such as decoherence. To address the challenges posed by decoherence, in this paper, we propose and prototype QLifeReducer to minimize the qubit lifetime in the input OpenQASM program by delaying qubits into quantum superposition. QLifeReducer includes three core modules, i.e.,the parser, parallelism analyzer and transformer. It introduces the layered bundle format to express the quantum program, where a set of parallelizable quantum operations is packaged into a bundle. We evaluate quantum programs before and after transformed by QLifeReducer on both real IBM Q 5 Tenerife and the self-developed simulator. The experimental results show that QLifeReducer reduces the error rate of a quantum program when executed on IBMQ 5 Tenerife by 11 lifetime by more than 20

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset