Optimizing Gradient-driven Criteria in Network Sparsity: Gradient is All You Need

01/30/2022
by   Yuxin Zhang, et al.
0

Network sparsity receives popularity mostly due to its capability to reduce the network complexity. Extensive studies excavate gradient-driven sparsity. Typically, these methods are constructed upon premise of weight independence, which however, is contrary to the fact that weights are mutually influenced. Thus, their performance remains to be improved. In this paper, we propose to further optimize gradient-driven sparsity (OptG) by solving this independence paradox. Our motive comes from the recent advances on supermask training which shows that sparse subnetworks can be located in a randomly initialized network by simply updating mask values without modifying any weight. We prove that supermask training is to accumulate the weight gradients and can partly solve the independence paradox. Consequently, OptG integrates supermask training into gradient-driven sparsity, and a specialized mask optimizer is designed to solve the independence paradox. Experiments show that OptG can well surpass many existing state-of-the-art competitors. Our code is available at <https://github.com/zyxxmu/OptG>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset