Optimizing Affine Maximizer Auctions via Linear Programming: an Application to Revenue Maximizing Mechanism Design for Zero-Day Exploits Markets

06/25/2020
by   Mingyu Guo, et al.
0

Optimizing within the affine maximizer auctions (AMA) is an effective approach for revenue maximizing mechanism design. The AMA mechanisms are strategy-proof and individually rational (if the agents' valuations for the outcomes are nonnegative). Every AMA mechanism is characterized by a list of parameters. By focusing on the AMA mechanisms, we turn mechanism design into a value optimization problem, where we only need to adjust the parameters. We propose a linear programming based heuristic for optimizing within the AMA family. We apply our technique to revenue maximizing mechanism design for zero-day exploit markets. We show that due to the nature of the zero-day exploit markets, if there are only two agents (one offender and one defender), then our technique generally produces a near optimal mechanism: the mechanism's expected revenue is close to the optimal revenue achieved by the optimal strategy-proof and individually rational mechanism (not necessarily an AMA mechanism).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro