Optimized clothes segmentation to boost gender classification in unconstrained scenarios

11/12/2016
by   D. Freire-Obregón, et al.
0

Several applications require demographic information of ordinary people in unconstrained scenarios. This is not a trivial task due to significant human appearance variations. In this work, we introduce trixels for clustering image regions, enumerating their advantages compared to superpixels. The classical GrabCut algorithm is later modified to segment trixels instead of pixels in an unsupervised context. Combining with face detection lead us to a clothes segmentation approach close to real time. The study uses the challenging Pascal VOC dataset for segmentation evaluation experiments. A final experiment analyzes the fusion of clothes features with state-of-the-art gender classifiers in ClothesDB, revealing a significant performance improvement in gender classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro