Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic Perspectives

02/28/2020 ∙ by Michael Muehlebach, et al. ∙ 60

We analyze the convergence rate of various momentum-based optimization algorithms from a dynamical systems point of view. Our analysis exploits fundamental topological properties, such as the continuous dependence of iterates on their initial conditions, to provide a simple characterization of convergence rates. In many cases, closed-form expressions are obtained that relate algorithm parameters to the convergence rate. The analysis encompasses discrete time and continuous time, as well as time-invariant and time-variant formulations, and is not limited to a convex or Euclidean setting. In addition, the article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms, and provides a characterization of algorithms that exhibit accelerated convergence.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.