Optimization of circuitry arrangements for heat exchangers using derivative-free optimization

05/30/2017
by   Nikolaos Ploskas, et al.
0

Optimization of the refrigerant circuitry can improve a heat exchanger's performance. Design engineers currently choose the refrigerant circuitry according to their experience and heat exchanger simulations. However, the design of an optimized refrigerant circuitry is difficult. The number of refrigerant circuitry candidates is enormous. Therefore, exhaustive search algorithms cannot be used and intelligent techniques must be developed to explore the solution space efficiently. In this paper, we formulate refrigerant circuitry design as a binary constrained optimization problem. We use CoilDesigner, a simulation and design tool of air to refrigerant heat exchangers, in order to simulate the performance of different refrigerant circuitry designs. We treat CoilDesigner as a black-box system since the exact relationship of the objective function with the decision variables is not explicit. Derivative-free optimization (DFO) algorithms are suitable for solving this black-box model since they do not require explicit functional representations of the objective function and the constraints. The aim of this paper is twofold. First, we compare four mixed-integer constrained DFO solvers and one box-bounded DFO solver and evaluate their ability to solve a difficult industrially relevant problem. Second, we demonstrate that the proposed formulation is suitable for optimizing the circuitry configuration of heat exchangers. We apply the DFO solvers to 17 heat exchanger design problems. Results show that TOMLAB/glcDirect and TOMLAB/glcSolve can find optimal or near-optimal refrigerant circuitry designs after a relatively small number of circuit simulations.

READ FULL TEXT

page 5

page 7

page 8

research
04/21/2023

Natural Evolution Strategy for Mixed-Integer Black-Box Optimization

This paper proposes a natural evolution strategy (NES) for mixed-integer...
research
04/11/2022

Application of QUBO solver using black-box optimization to structural design for resonance avoidance

Quadratic unconstrained binary optimization (QUBO) solvers can be applie...
research
12/19/2022

CMA-ES with Margin for Single-and Multi-Objective Mixed-Integer Black-Box Optimization

This study targets the mixed-integer black-box optimization (MI-BBO) pro...
research
06/04/2019

Customizing Pareto Simulated Annealing for Multi-objective Optimization of Control Cabinet Layout

Determining the optimal location of control cabinet components requires ...
research
12/29/2018

Hessian-Aware Zeroth-Order Optimization for Black-Box Adversarial Attack

Zeroth-order optimization or derivative-free optimization is an importan...
research
10/19/2020

Robot Design With Neural Networks, MILP Solvers and Active Learning

Central to the design of many robot systems and their controllers is sol...
research
09/07/2019

Estimating the Optimal Linear Combination of Biomarkers using Spherically Constrained Optimization

In the context of a binary classification problem, the optimal linear co...

Please sign up or login with your details

Forgot password? Click here to reset