Optimal Sparse Estimation of High Dimensional Heavy-tailed Time Series

09/19/2022
by   Sagnik Halder, et al.
0

Recently, high dimensional vector auto-regressive models (VAR), have attracted a lot of interest, due to novel applications in the health, engineering and social sciences. The presence of temporal dependence poses additional challenges to the theory of penalized estimation techniques widely used in the analysis of their iid counterparts. However, recent work (e.g., [Basu and Michailidis, 2015, Kock and Callot, 2015]) has established optimal consistency of ℓ_1-LASSO regularized estimates applied to models involving high dimensional stable, Gaussian processes. The only price paid for temporal dependence is an extra multiplicative factor that equals 1 for independent and identically distributed (iid) data. Further, [Wong et al., 2020] extended these results to heavy tailed VARs that exhibit "β-mixing" dependence, but the rates rates are sub-optimal, while the extra factor is intractable. This paper improves these results in two important directions: (i) We establish optimal consistency rates and corresponding finite sample bounds for the underlying model parameters that match those for iid data, modulo a price for temporal dependence, that is easy to interpret and equals 1 for iid data. (ii) We incorporate more general penalties in estimation (which are not decomposable unlike the ℓ_1 norm) to induce general sparsity patterns. The key technical tool employed is a novel, easy-to-use concentration bound for heavy tailed linear processes, that do not rely on "mixing" notions and give tighter bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset