Optimal Resource Allocation over Networks via Lottery-Based Mechanisms

12/03/2018
by   Soham R. Phade, et al.
0

We show that, in a resource allocation problem, the ex ante aggregate utility of players with cumulative-prospect-theoretic preferences can be increased over deterministic allocations by implementing lotteries. We formulate an optimization problem, called the system problem, to find the optimal lottery allocation. The system problem exhibits a two-layer structure comprised of a permutation profile and optimal allocations given the permutation profile. For any fixed permutation profile, we provide a market-based mechanism to find the optimal allocations and prove the existence of equilibrium prices. We show that the system problem has a duality gap, in general, and that the primal problem is NP-hard. We then consider a relaxation of the system problem and derive some qualitative features of the optimal lottery structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset