Optimal-order preconditioners for the Morse-Ingard equations

11/22/2019
by   Peter Coogan, et al.
0

The Morse-Ingard equations of thermoacoustics are a system of coupled time-harmonic equations for the temperature and pressure of an excited gas. They form a critical aspect of modeling trace gas sensors. In this paper, we analyze a reformulation of the system that has a weaker coupling between the equations than the original form. We give a Gårding-type inequality for the system that leads to optimal-order asymptotic finite element error estimates. We also develop preconditioners for the coupled system. These are derived by writing the system as a 2x2 block system with pressure and temperature unknowns segregated into separate blocks and then using either the block diagonal or block lower triangular part of this matrix as a preconditioner. Consequently, the preconditioner requires inverting smaller, Helmholtz-like systems individually for the pressure and temperature. Rigorous eigenvalue bounds are given for the preconditioned system, and these are supported by numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset