Optimal One-pass Nonparametric Estimation Under Memory Constraint

08/18/2022
by   Mingxue Quan, et al.
0

For nonparametric regression in the streaming setting, where data constantly flow in and require real-time analysis, a main challenge is that data are cleared from the computer system once processed due to limited computer memory and storage. We tackle the challenge by proposing a novel one-pass estimator based on penalized orthogonal basis expansions and developing a general framework to study the interplay between statistical efficiency and memory consumption of estimators. We show that, the proposed estimator is statistically optimal under memory constraint, and has asymptotically minimal memory footprints among all one-pass estimators of the same estimation quality. Numerical studies demonstrate that the proposed one-pass estimator is nearly as efficient as its non-streaming counterpart that has access to all historical data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset