Optimal Margin Distribution Network

12/27/2018
by   Shen-Huan Lv, et al.
0

Recent research about margin theory has proved that maximizing the minimum margin like support vector machines does not necessarily lead to better performance, and instead, it is crucial to optimize the margin distribution. In the meantime, margin theory has been used to explain the empirical success of deep network in recent studies. In this paper, we present mdNet (the Optimal Margin Distribution Network), a network which embeds a loss function in regard to the optimal margin distribution. We give a theoretical analysis of our method using the PAC-Bayesian framework, which confirms the significance of the margin distribution for classification within the framework of deep networks. In addition, empirical results show that the mdNet model always outperforms the baseline cross-entropy loss model consistently across different regularization situations. And our mdNet model also outperforms the cross-entropy loss (Xent), hinge loss and soft hinge loss model in generalization task through limited training data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset