Optimal local identifying and local locating-dominating codes

02/26/2023
by   Pyry Herva, et al.
0

We introduce two new classes of covering codes in graphs for every positive integer r. These new codes are called local r-identifying and local r-locating-dominating codes and they are derived from r-identifying and r-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small n optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular rid and the king grid. We prove that seven out of eight of our constructions have optimal densities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset