Optimal Hyperparameters and Structure Setting of Multi-Objective Robust CNN Systems via Generalized Taguchi Method and Objective Vector Norm

02/09/2022
by   Sheng-Guo Wang, et al.
0

Recently, Machine Learning (ML), Artificial Intelligence (AI), and Convolutional Neural Network (CNN) have made huge progress with broad applications, where their systems have deep learning structures and a large number of hyperparameters that determine the quality and performance of the CNNs and AI systems. These systems may have multi-objective ML and AI performance needs. There is a key requirement to find the optimal hyperparameters and structures for multi-objective robust optimal CNN systems. This paper proposes a generalized Taguchi approach to effectively determine the optimal hyperparameters and structure for the multi-objective robust optimal CNN systems via their objective performance vector norm. The proposed approach and methods are applied to a CNN classification system with the original ResNet for CIFAR-10 dataset as a demonstration and validation, which shows the proposed methods are highly effective to achieve an optimal accuracy rate of the original ResNet on CIFAR-10.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset