Optimal estimation of Gaussian mixtures via denoised method of moments

by   Yihong Wu, et al.

The Method of Moments [Pea94] is one of the most widely used methods in statistics for parameter estimation, by means of solving the system of equations that match the population and estimated moments. However, in practice and especially for the important case of mixture models, one frequently needs to contend with the difficulties of non-existence or non-uniqueness of statistically meaningful solutions, as well as the high computational cost of solving large polynomial systems. Moreover, theoretical analysis of the method of moments are mainly confined to asymptotic normality style of results established under strong assumptions. This paper considers estimating a k-component Gaussian location mixture with a common (possibly unknown) variance parameter. To overcome the aforementioned theoretic and algorithmic hurdles, a crucial step is to denoise the moment estimates by projecting to the truncated moment space (via semidefinite programming) before solving the method of moments equations. Not only does this regularization ensures existence and uniqueness of solutions, it also yields fast solvers by means of Gauss quadrature. Furthermore, by proving new moment comparison theorems in the Wasserstein distance via polynomial interpolation and majorization techniques, we establish the statistical guarantees and adaptive optimality of the proposed procedure, as well as oracle inequality in misspecified models. These results can also be viewed as provable algorithms for Generalized Method of Moments [Han82] which involves non-convex optimization and lacks theoretical guarantees.


page 1

page 2

page 3

page 4


Estimating Gaussian mixtures using sparse polynomial moment systems

The method of moments is a statistical technique for density estimation ...

Estimating Mixture Models via Mixtures of Polynomials

Mixture modeling is a general technique for making any simple model more...

Learning mixtures of spherical Gaussians: moment methods and spectral decompositions

This work provides a computationally efficient and statistically consist...

Moment Identifiability of Homoscedastic Gaussian Mixtures

We consider the problem of identifying a mixture of Gaussian distributio...

Tensor Moments of Gaussian Mixture Models: Theory and Applications

Gaussian mixture models (GMM) are fundamental tools in statistical and d...

Polynomial methods in statistical inference: theory and practice

This survey provides an exposition of a suite of techniques based on the...

Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angles

Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is ...