Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
The theory of kernelization can be used to rigorously analyze data reduction for graph coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input whose size is provably bounded in terms of structural properties, such as the size of a minimum vertex cover. In this paper we settle two open problems about data reduction for q-Coloring. First, we obtain a kernel of bitsize O(k^q-1k) for q-Coloring parameterized by Vertex Cover, for any q >= 3. This size bound is optimal up to k^o(1) factors assuming NP is not a subset of coNP/poly, and improves on the previous-best kernel of size O(k^q). We generalize this result for deciding q-colorability of a graph G, to deciding the existence of a homomorphism from G to an arbitrary fixed graph H. Furthermore, we can replace the parameter vertex cover by the less restrictive parameter twin-cover. We prove that H-Coloring parameterized by Twin-Cover has a kernel of size O(k^Δ(H) k). Our second result shows that 3-Coloring does not admit non-trivial sparsification: assuming NP is not a subset of coNP/poly, the parameterization by the number of vertices n admits no (generalized) kernel of size O(n^2-e) for any e > 0. Previously, such a lower bound was only known for coloring with q >= 4 colors.
READ FULL TEXT